

Mr. Wright's Math Extravaganza

Precalculus

Systems of Equations and Inequalities

Level 2.0: 70% on test, Level 3.0: 80% on test, Level 4.0: level 3.0 and success on applications

Score	I Can Statements									
4.0	□ I can demonstrate in-depth inferences and applications that go beyond what was taught.									
3.5	In addition to score 3.0 performance, partial success at score 4.0 content									
3.0	I can solve systems of linear and nonlinear equations.									
	 I can solve systems of inequalities by graphing. 									
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content									
2.0	 I can solve systems of equations by graphing. 									
	I can solve systems of equations by substitution.									
	I can solve systems of linear equations by elimination.									
	□ I can solve systems of linear equations by putting it into row-echelon form using elementary row									
	operations.									
	I can decompose rational expressions into partial fractions.									
	I can find the vertices of the a graph of a system of inequalities.									
	I can use linear programming to minimize or maximize a function.									
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content.									
1.0	With help, partial success at score 2.0 content and score 3.0 content.									
0.5	With help, partial success at score 2.0 content but not at score 3.0 content.									
0.0	Even with help, no success.									

8-01 Nonlinear and Linear Systems

System of Equations

Several equations with the ______solution

Substitution

- 1. _____one equation for a variable
- 2. _____this expression into the other equation
- 3. _____the new equation
- 4. _____the solution back into the 1st equation and solve

Solve $\begin{cases} -2x + y = 5\\ x^{2} + 3x - y = 1 \end{cases}$

Graphical Method

1 · 11

- _____both equations on ______coordinate plane
- The points of _____are the solutions.

50	IV	e gr	apr	nca	пу					
ג } _	c^2 x	-y +y	' = ' =	5 -3						
_		-			-			-		
							•			
Γ										
F										
┝										
Γ										
	←									->
┢									 	
⊢										
F										
┢										
						•	1			

8-02 Two-Variable Linear Systems

8-03 Multivariable Linear Systems

Row-Echelon Form

- The first ______term in each equation has a coefficient of ______.
- All terms ______the leading 1 are ______producing an inverted ______shape.
- Any equations that are all _____are at the _____

$$\begin{cases} 1x + y + 3z = 3 \\ 1y + 5z = 10 \\ 1z = 7 \end{cases}$$

Elementary Row Operations

The following operations are allowed in systems of equations and produce equivalent systems.

- _____two equations
- _____one equation by a nonzero constant

• _____a multiple of one equation to another equation and replace the latter equation

Solve $\begin{cases} x + y + z = 3 \\ 2x - y + 3z = 16 \\ x - 2y - z = 1 \end{cases}$

Solve $\begin{cases} x + 2y - 7z = -4 \\ 2x + 3y + z = 5 \\ 3x + 7y - 36z = -25 \end{cases}$

Solve $\begin{cases} x - y + 4z = 3\\ 4x - z = 0 \end{cases}$

8-04 Partial Fractions

To split a rational function into smaller _ •

$$\frac{x+8}{x^2+6x+8} = \frac{?}{x+2} + \frac{?}{x+4}$$

To Find Partial Fractions

- _____the denominator. 1.
- 2. For each _______factor of the denominator are in the form
- $\frac{A}{px+q} + \frac{B}{(px+q)^2} + \cdots$ 3. For each _______factor of the denominator are in the form $\frac{Ax+B}{ax^2+bx+c} + \frac{Cx+D}{(ax^2+bx+c)^2} + \cdots$ 4. _____for *A*, *B*, *C*, etc.
- 5. Multiply by the ______a. Choose ______values of *x* to find *A*, *B*, *C*, etc.
 - b. Or create a ______ of linear equations based on the ______ of *x*.

Find the partial fractions $\frac{x+8}{x^2+6x+8}$

Precal	culus	8-04
--------	-------	------

$3x^2 - x + 5$	
$x^3 - 2x^2 + x$	

 $\frac{6x^3 + 16x}{(x^2 + 3)^2}$

8-05 Systems of Inequalities

Solve Systems of Inequalities

- 1. Graph ______the inequalities on the _____coordinate plane.
- 2. Find the ______of the _____areas.

Graph an Inequality

- 1. Pretend the inequality sign is = and ______the line.
- 2. Decide if the line is ______or _____
 - a. Solid if _____
 - b. Dotted if _____
- 3. _____
 - a. Pick a ______ point ______ on the line.
 - b. _____the test point into the inequality
 - i. If this results in a ______statement, then shade the side of the graph ______the test point.
 - ii. If the result is _____a true statement, then shade the _____side of the graph.
 - c. OR if solved for _____
 - i. y > shade _____the line.
 - ii. *y* < shade _____the line.

8-06 Linear Programming

